MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) Department of Computer Science and Engineering II B.Tech I Sem II Mid Examination (MR20 Regulation) Subject: DISCRETE MATHEMATICS

MODULE III

- 1a) Discuss about semi group, monoid, group, abelian group and subgroup.
 - b) Prove that the cubeth roots of unity $\{1, w, w^2\}$ is an abelian group with respect to multiplication(.)
- 2 a) Prove that $(Z,+_6)$ is an abelian group.
 - b) Prove that the fourth roots of unity $\{1, i, -i, -1\}$ is an abelian group with respect to multiplication(.)
- 3. Prove that the intersection of two sub groups is also a subgroup.
- 4. Define Algebraic structure? On the set Q of all rational numbers, the operation * is defined by a*b= a + b ab. show that under this operation forms a commutative Group.
- 5 a) Explain about the Homomorphism and Isomorphism with one example.
 - b) Suppose the function $f:(R,+)\to(R^*,.)$ is defined by $f(x)=e^x$. Prove that f is isomorphism.
- 6 a) Prove that in a group G, there exits an unique identity element.
 - b) Suppose the function $f:(R,+)\to(R,.)$ is defined by f(x)=2x. Prove that f is not homomorphism.

MODULE IV

- 1(a) State and Prove Binomial Theorem.
- (b)In how many ways can the letters {5.a, 4.b,3.c} be arranged so that all the letters of the same kind are not in a single block
- 2(a) State Multinomial Theorem. Find the coefficient of $x^5 y^2$ in the expansion of $(2x-3y)^7$
 - (b) Let X be the set of all three digit integers that is $X=\{x \text{ is an integer } / 100 \le x \le 999\}$ If A_i is the set

of numbers in X whose ith digit is i , compute the cardinality of the set A₁UA₂UA₃ .

3(a) If there are 200 faculty members that speak French, 50 that speak Russian, 100 that speak Spanish, 20 that speak French and Russian, 60 that speak French and Spanish, 35 that speak Russian and Spanish , while only 10 speak French , Russian and Spanish, how many speak either French or Russian or Spanish.

- (b) Find the coefficient of $x^3y^3z^2$ in the expansion of $(2x-3y+5z)^8$
- 4(a) Expand $(2x+3y-5z)^3$ using Multinomial Theorem
 - (b) Find the number of integer solutions of x + y + z + w + t = 30 where $x \ge 2$, $y \ge 3$, $z \ge 4$, $w \ge 2$, $t \ge 0$.
- 5(a) Find the mid term of $(2x \frac{1}{3x})^{10}$

- (b) Find the number of arrangements of the letters in TALLAHASSEE which have no adjacent A's
- 6(a) Find the number of permutations of the letters of the word MASSASAUGA. In how many of these All four A's are together. How many of them begin with S.
- (b) Find the number of words that can be formed by scrambling the letters of the word SCRAMBLE
- 7(a) Find the number of integers ≤ 250 and divisible by 3 or 5 or 7.
- (b) Write some applications of the Pigeonhole principle.
- 8(a) An identifier in a programming language consists of a letter followed by alphanumeric characters.Find the number of legal identifiers of length at most 10.
- (b) Enumerate the number of non-negative integer solutions to the in-equality x+y+z < 15

MODULE V

- 1. (a) Find the generating function for the Fibonacci Sequence $< F_n >$ and hence obtain an expression for F_n
 - (b) Solve $a_{n+3} = 3a_{n+2} + 4a_{n+1} 12a_n$
- 2. (a) Solve the recurrence relation $a_{n+2} 4 a_{n+1} + 3a_n = -200$, $n \ge 0$ and $a_0 = 3000$, $a_1 = 3300$
 - (b) Solve the recurrence relation $a_n + a_{n-1} 8a_{n-2} 12a_{n-3} = 0$, $n \ge 3$
- 3. (a) Solve the recurrence relation $a_{n+2} + 3a_{n+1} + 2a_n = 3^n$ for $n \ge 0$ given $a_0 = 0$, $a_1 = 1$
 - (b) A bank pays a certain % of annual interest on deposits, compounding the interest once in 3 months

If deposit doubles in 6 years and 6 months, What is the annual % of interest paid by the bank.

- 4.(a) Solve the recurrence relation a_{n+3} - $3a_{n+2}$ + $3a_{n+1}$ - a_n = 3+5n for n ≥ 0
 - (b) Solve the recurrence relation $a_n 7a_{n-1} + 16a_{n-2} 12a_{n-3} = 0$ for $n \ge 3$ with $a_0 = 1$, $a_1 = 4$, $a_2 = 8$.
- 5. (a) Using the generating function method, Solve the recurrence relation $a_n 3a_{n-1} = n$, $n \ge 1$ given $a_0 = 1$.
 - (b) Find the generating function of the sequence $a_n = n$
- 6.(a) Solve the recurrence relation a_{n+2} -2 a_{n+1} + $a_n = 2^n$, $n \ge 0$ and $a_0 = 1$, $a_1 = 2$ by the method of generating function.
 - (b) Solve the recurrence relation $a_n a_{n-1} = 3n^2$, $n \ge 1$, $a_0 = 7$.
- 7(a). Solve $a_n = 3a_{n-1} + 2a_{n-2} + (n+3) 3^n$
- (b). Find the coefficient of x^{2005} in the generating function $\frac{1}{(1+5x)^2}$
- 8(a). Find the general solution of the recurrence relation $a_n = a_{n-1} + 6a_{n-2} + (n+1)3^n$
- (b). Find the general solution of the recurrence relation $a_n 7a_{n-2} + 10$ $a_{n-4} = 0$, $n \ge 4$.

	Question and Options	Answer
1	In a Group (G,.) The identity element is	А
	Unique	
	One	
	Тwo	
	Three	
2	If (G, .) is a group such that $a^2 = e \forall a \in G$, then G is	В
	semi group	
	abelian group	
	non-abelian group	
	none of these	
3	If (G, .) is a group such that $(ab)^{-1} = b^{-1}a^{-1}$, \forall a, b \in G, then G is a/an	В
	commutative semi group	
	abelian group	
	non-abelian group	
	None of these	
4	The inverse of - i in the multiplicative group $\{1, -1, i, -i, \}$ is	С
		<u> </u>
	-1	
5	The set of integers 7 with the binary operation "1" defined as $a \pm b - a$	C
5	$\pm b \pm 1$ for a $b \in 7$ is a group. The identity element of this group is	C
	1	
	1	
	-1	
6	If (G, .) is a group, such that $(ab)^2 - a^2b^2 \forall a, b \in G$, then G is a/an	В
	= (c, y) = a g +	
	commutative semi group	
	non-abelian group	
	abelian group	
	All the above	
7	(Z,*) is a group with $a^*b = a+b+1 \forall a, b \in Z$. The inverse of a is	D
	0	
	-2	
	a-2	
	-a-2	
8	If a, b are positive integers, define a $* b = \alpha$ where $ab = \alpha$ (modulo 7),	C
	with this * operation, then inverse of 3 in group G (1, 2, 3, 4, 5, 6) is	
	3	
	5	
9	The set of all nth roots of unity under multiplication of complex	D
	numbers form a/an	
	semi group with identity	
	commutative semigroups with identity	
	Group	
	abelian group	
10	In the group $G = \{2, 4, 6, 8\}$ under multiplication modulo 10, the	A
	Identity element is	
	6	
	8	

	4		
	2		
11	Match the following		А
	A. Groups I. Associ	ativity	
	B. Semi groups II. Identit	V	
	C. Monoids III. Com	nutative	
	D. Abelian Groups IV Left inv	verse	
	A B	C D	
	IV I II III		
	A B	C D	
	III I IV II		
	A B	C D	
	II III I IV		
	A B	C D	
	I II III IV		
12	Let $(Z, *)$ be an algebraic structu	re, where Z is the set of integers and	D
	the operation * is defined by n *	m = maximum (n, m). Which of the	
	following statements is TRUE for	or (Z, *)?	
	(Z, *) is a monoid		
	(Z, *) is an abelian group		
	(Z, *) is a group		
	None of these		
13	If the binary operation * is deine	d on a set of ordered pairs of real	А
	numbers as $(a,b)^*(c, d) = (ad + b)^*(c, d)$	bc, bd) and is associative, then $(1, 2) *$	
	(3, 5) * (3, 4) equals		
	(74,40)		
	(32,40)		
	(23,11)		
	(27,11)		
14	Boolean algebra is also called		А
	switching algebra		
	arithmetic algebra		
	linear algebra		
	Algebra		~
15	Boolean algebra theorem 6b give	es $x(x+y)$ equal to	C
-	X'		
	1		
	X		
	0		
16	$e^*x = x^*e = x$ is the		D
	commutative property		
	inverse property		
	associative property		
	identity element		
17	A Boolean function may be tran	sformed into	А
	logical diagram		
	logical graph		
	Мар		
	Matrix		
18	x + xy = y is known as		D
	inverse law		
	commutative law		
	distributive law		
	absorption law		
19	A two valued Boolean algebra is	defined as a set of	В
	three values		

	two values	
	four values	
	five values	
20	Another way of expressing Boolean algebra is	D
	graphical form	
	plot form	
	non standard form	
	standard form	
21	One that is not postulate of Boolean algebra	В
	Commutative	
	Duality	
	Associative	
	identity element	
22	Boolean algebra is an algebraic structure with two arithmetic operations	С
	addition and subtraction	
	subtraction and multiplication	
	addition and multiplication	
	addition and division	
23	Is it possible to find two algebraic expressions that specify same	В
	function	
	No	
	Yes	
	Maybe	
	Never	
24	x + y = y + x is the	А
	commutative property	
	inverse property	
	associative property	
	identity element	
25	Boolean algebra is collection of objects having	С
	positive properties	
	negative properties	
	common properties	
	different properties	
26	According to combination rule, if total number of outcomes are 'r' and	А
	distinct outcome collection is 'n' then combinations are calculated as	
	<u></u>	
	r!(n-r)!	
	n!	
	$\frac{1}{r!(n+r)!}$	
	(n+r):	
	n!(n-r)!	
	r!	
	$\overline{n!(n+r)!}$	
27	Mathed of counting outcomes in which number of outcomes are	D
27	determined while considering ordering is classified as	D
	intersection combinations	
	union combinations	
	listed combination	
	Permutations	
28	Method of counting outcomes in which number of outcomes are	С
20	determined without taking care of arrangement order is classified as	C
	listed combinations	
	union combinations	<u> </u>
L		

	intersection combination	
	unlisted combinations	
29	Considering combination rule of counting outcome, value of 5! Is	В
	5	
	120	
	24	
	20	
30	If a brown sack consists of 4 white halls and 3 black halls then	Δ
50	probability of one randomly drawn ball will be white is	11
	1	
	7	
	4	
	$\overline{4}$	
	4	
	$\overline{3}$	
31	From a group of 7 men and 6 women five persons are to be selected to	D
51	form a committee so that at least 3 men are there on the committee. In	D
	how many ways can it be done?	
	564	
	645	
	735	
	755	
22	/JO In how many different ways can the latters of the word 'I EADINC' he	C
52	In now many different ways can the fetters of the word LEADING be	C
	arranged in such a way that the vowers arways come together?	
	360	
	480	
	720	
- 22		D
33	In how many different ways can the letters of the word	D
	CORPORATION be arranged so that the vowels always come	
	810	
	1440	
	2880	
<u> </u>		~
34	Out of / consonants and 4 vowels, how many words of 3 consonants	C
	and 2 vowels can be formed?	
	210	
	1050	
	25200	
	21400	~
35	In how many ways can the letters of the word 'LEADER' be arranged?	С
	72	
	144	
ļ	360	
	720	
36	In a group of 6 boys and 4 girls, four children are to be selected. In	D
	how many different ways can they be selected such that at least one	
	boy should be there?	
	159	
	194	
	205	
	209	

37	How many 3-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are divisible by 5 and none of the digits is repeated?	D
	5	
	10	
	15	
	20	
20	20	C
20	In now many ways a commutee, consisting of 5 men and 6 women can	C
	be formed from 8 men and 10 women?	
	5040	
	11760	
	86400	
39	A box contains 2 white balls, 3 black balls and 4 red balls. In how many ways can 3 balls be drawn from the box, if at least one black ball	С
	is to be included in the draw?	
	32	
	48	
	64	
	96	
40	In how many different ways can the letters of the word 'DETAIL' be	С
	arranged in such a way that the yowels occupy only the odd positions?	-
	32	
	18	
	26	
	50	
4.1		٨
41	In now many ways can a group of 5 men and 2 women be made out of	А
	a total of 7 men and 5 women?	
	63	
	120	
	98	
	49	
42	In how many different ways can the letters of the word 'MATHEMATICS' be arranged so that the vowels always come	С
	10080	
	4989600	
	120960	
	198560	
43	In how many different ways can the letters of the word 'OPTICAL' be	В
	arranged so that the vowels always come together?	
	120	
	720	
	5040	
	None	
45	In the equation $x^2 + x = 0$, one root is x equal to	А
	$5x^2 + 3x - 2 = 0$	
	$2x^2 + 3x - 5 = 0$	
	$3x^2 - 3x + 2 = 0$	
	$2x^2 + 5x - 3 = 0$	
46	In the equation $x^2 + x = 0$ one root is x equal to	П
0	$\frac{1}{1}$	
	5	
	74 none of these	
47	1000000000000000000000000000000000000	•
41	Solve for the value of " \mathbf{a} " in the equation $\mathbf{a}^\circ - 1/\mathbf{a}^\circ + 16 = 9$	A
	± 3	

	± 4	
	All the above	
48	Solve for x that satisfies the equation $6x^2 - 7x - 5 = 0$	А
	5/3 or -1/2	
	3/2 or 3/8	
	7/5 or -7/15	
	3/50r ³ / ₄	
49	Find the values of x in the equation $24x^2 + 5x - 1 = 0$	D
	(1/6.1)	_
	(1/6, 1/5)	
	(1/2, 1/5)	
	(1/2,1/3) (1/8,-1/3)	
50	Determine k so that the equation $4x^2 + kx + 1 = 0$ will have just one real	B
50	solution	D
	3	
	<u>з</u>	
	5	
	5	
51	$\frac{0}{5} = \frac{10x^2 + 10x + 1 - 0}{5}$	٨
51	$\begin{array}{c} \text{Solve for } x. \ 10x + 10x + 1 = 0 \\ 0.112 & 0.997 \end{array}$	A
	-0.115, -0.887	
	-0.551, -0.788	
	-0.113, -0.788	
50		•
52	If $1/3$ and $-3/2$ are roots of a quadratic equation, then the equation is	А
	$6x^2 + 7x - 3 = 0$	
	$6x^2 - 7x + 3 = 0$	
	$6x^2 - 7x - 3 = 0$	
	$6x^2 - 7x + 1 = 0$	~
53	Which of the following is a root of this quadratic equation $30x^2 + 49x$	С
	+20=0	
	0.6	
	-0.6	
	-0.8	
	0.75	
54	What is the discriminant of the equation $4x^2 = 8x - 5$?	В
	8	
	-16	
	16	
	-8	
55	Given the equation $3x^2 + Bx + 12 = 0$. What is the value of B so that	D
	the roots of the equation are equal?	
	4	
	8	
	10	
	-12	
56	Find the 5 th term of expansion of	С
	$\left(x^{2}+1\right)^{10}$	
	$\begin{pmatrix} x & + - \\ x \end{pmatrix}$	
	260 x^8	
	5040 x ⁸	
	$210 x^8$	
	420 x^8	
57	In the expression of $(x + 4y)^{12}$, the numerical coefficient of the 5 th term	B
	is.	2
	63.360	
	126.720	
L		

	506,880	
	253,440	
58	What is the fourth term of the expansion of $(x + x^2)^{100}$?	В
	1650 x ¹⁰³	
	161700 x ¹⁰³	
	167100 x^{103}	
	167100 x^{100}	
59	What is the numerical coefficient of the term next to $495x^8v^4$?	В
0,2	660	2
	792	
	990	
	1100	
60	What is the coefficient of the term free of x of the expansion of $(2x -$	D
00	$5v)^4?$	2
	256	
	526	
	265	
	625	
61	A partial ordered relation is transitive reflexive and	D
01	$-148\ 288\ x^3v^5$	D
	$-548 \text{x}^2 \text{v}^5$	
	$-154\ 288\ x^3 v^5$	
	-1548288	
62	Given $\log_{y} y = 2x + \log_{y} x$ Which of the following is true?	D
02	$y = b^{2x}$	D
	y=0 y=2xh	
	y=2x/b	
	$v = x h^{2x}$	
63	What expression is equivalent to $\log (x) - \log (y + z)$?	В
	$\log x + \log y + \log z$	2
	$\log \left[\frac{x}{(y+z)} \right]$	
	$\log x - \log y - \log z$	
	$\log y + \log (x + z)$	
64	Which of the following is correct?	С
	$-2 \log 7 = 1/49$	
	$\log_7 (-2) = 1/49$	
	$\log_7(1/49) = -2$	
	$\log_7(1/49) = 2$	
65	If $\log_x 2 + \log^2 x = 2$, then the value of x is	А
	1	
	2	
	3	
	4	
66	Log ₆ 845 =?	D
	4.348	
	6.348	
	5.912	
	3.761	
67	The logarithm of negative number is:	D
	irrational number	
	real number	
	imaginary number	
	complex number	
68	The middle term in the expansion of $(x^2 - 3)^8$ is:	D
	-70x ⁸	
	$70x^8$	

	-5760x ⁸	
	5760x ⁸	
69	Find the sum of the coefficients in the expansion of $(x + 2y - z)^8$	А
	$\frac{1}{256}$	
	1024	
	1	
	6	
70	If the roots of $ax^2 + bx + a = 0$ are y and y, then the roots of $ax^2 + bx + a$	C
70	If the foots of $ax^2 + bx + c = 0$, are u and v, then the foots of $cx^2 + bx + c = 0$, are:	C
	a = 0 dife.	
	1/u and 1/v	
	-1/u and -1/v	
71	The only root of the equation $x^2 - 6x + k = 0$ is:	A
	3	
	2	
	6	
	1	
72	A family of 121 crows move into a new neighborhood which has 12	В
	identical birdhouses. What is the minimum number of crows that each	
	birdhouse must be able to hold, in order for all the birds to fit?	
	21	
	11	
	12	
	16	
73	5 integers are randomly chosen from 1 to 2015. What is the probability	D
, 0	that there is a pair of integers whose difference is a multiple of 4?	2
	$1/_2$	
	1/2	
	2/5	
	1	
74	Find k so that the expression $kx^2 = 3kx + 0$ is a perfect square	P
/+	$\frac{1}{2}$	D
	3	
	4	
75		•
/5	The equation whose roots are the reciprocals of the roots of $2x^2 - 3x - 5x - 3x - 5x - 3x - 5x - 5x - 5x$	А
	5 = 0.18:	
	$5x^2 + 3x - 2 = 0$	
	$3x^2 - 5x - 3 = 0$	
	$5x^2 - 2x - 3 = 0$	
	$2x^2 - 5x - 3 = 0$	
76	$f(x)=(1+x)^{-1}$ is a generating function for the sequence	В
	1,1,1,1,	
	1,-1,1,-1,1,-1,	
	1,2,3,4,	
	None	
77	$f(x)=(1+x)^n$ is a generating function for the sequence	С
	$1, n/1!, n.(n+1)/2!, n.(n+1)(n+2)/3!, \dots$	
	$1, n/1!, n.(n-1)/2!, n.(n-2)(n-3)/3!, \dots$	
	$1, n/1!, n.(n-1)/2!, n.(n-1)(n-2)/3!, \dots$	
	All the above	
<u> </u>	f(x)=(3+x)3 is a generating function for the sequence	А
78		
-	27,27,9,1,0,0,0	
L		
	27.27.9.3.0.0.0	

	27,9,9,1,0,0,0	
79	e ^{2x} generating function for the sequence	В
	$1,2, 2^2/1!, 2^2/2!, \dots$	
	$1,2/1!, 2^2/2!, 2^3/3!, \dots$	
	$2/1!, 2^2/2!, 2^3/3!, \dots$	
	$1,2,2,2^2/2!,\ldots$	
80	Find the generating function of the following sequence 1,2,3,4	А
	$(1-x)^{-2}$	
	$(1-x)^2$	
	$(1-x)^2$	
	(1-x) ⁿ	
81	Find the generating function of the following sequence 1,-2,3,-4	В
	$(1+x)^2$	
	$(1+X)^{-2}$	
	$(1+X)^{n}$	
02	$(1+X)^{-1}$ Eind the concenting function of the following acqueres 0.1.2.2.4	D
02	Find the generating function of the following sequence $0, 1, 2, 5, 4, \dots$	D
	x(1-x) $x(1-x)^{-2}$	
	x(1-x) $x(1-x)^{-1}$	
	$\frac{x(1-x)^n}{x(1-x)^n}$	
83	First order Recurrence relation form	А
	a = ca + f(n)	
	$\alpha_n = \alpha_{n-1} + j(n)$	
	$a_n = ca_{n-1} + c_n a_0$	
	$a_n = ca_{n-1}$	
	None	
84	First order Recurrence relation form $a_n = ca_{n-1} + f(n)$ if $f(n) = 0$ is	В
	called	
	Non homogeneous	
	Homogeneous	
	Both	
	None	
85	First order Recurrence relation form $a_n = ca_{n-1} + f(n)$ if $f(n) \neq 0$ is	А
	called	
	Non homogeneous	
	Homogeneous	
	Both	
	None	
86	Solve the recurrence relation $a = 4a$ for $n \ge 0$ $a = 3$	А
	Solve the recurrence relation $u_{n+1} = u_n$ for $n \ge 0$, $u_0 = 0$	
	$a_n = 4 (3)$	
	$a_n = 4^{n+1} a_n$	
	$a_{n+1} = 4^n a_1$	
	$a_n = 4^n a_1$	
87	First order Recurrence relation form $a = ca + f(n+1)$ if	А
	$f(n+1) \neq 0$ the general solution is	
	$a_n = c_n a_0 + \sum_{k=1}^{n} c^{n-k} f(k)$	
	k=1	
	$u_n - c_n u_0$ Both	
	None	
	none	

88	Second order Recurrence relation form	А
	$c_n a_n + c_{n-1} a_{n-1} + c_{n-2} a_{n-2} = 0$ for $n \ge 2$	
	$a_{n=}c_{n}a_{0}$	
	$a_{n=}c_{n}a_{0}+f(n)$	
	None	
89	Solution for the Second order Recurrence relation when the roots are real and distinct	В
	$a_n = r^n \left(A \cos n\phi + B \sin n\phi \right)$	
	$a_n = A(k_1)^n + B(k_2)^n$	
	$a_n = (A + Bn)k^n$	
	$a_n = A(k_1)^n + B(k_2)^n + C$	
90	Solution for the Second order Recurrence relation when the roots are real and equal	С
	$a_n = r^n \left(A \cos n\phi + B \sin n\phi \right)$	
	$a_n = A(k_1)^n + B(k_2)^n$	
	$a_n = (A + Bn)k^n$	
	$a_n = A(k_1)^n + B(k_2)^n + C$	
91	Solution for the Second order Recurrence relation when the roots are complex	А
	$a_n = r^n \left(A \cos n\phi + B \sin n\phi \right)$	
	$a_n = A(k_1)^n + B(k_2)^n$	
	$a_n = (A + Bn)k^n$	
	$a_n = A(k_1)^n + B(k_2)^n + C$	
92	Second order Recurrence relation when the roots are complex Solution r=	С
	$\sqrt{\mathbf{p}^2-\mathbf{q}^2}$	
	$\sqrt{p+q^2}$	
	$\sqrt{\mathbf{p}^2+\mathbf{q}^2}$	
	$\sqrt{p^2+q}$	
93	Second order Recurrence relation when the roots are complex Solution ϕ =	А
	$\tan^{-1}(q/p)$	
	$\tan^{-1}(q^*p)$	
	$\tan^{-1}(p/q)$	
	None	
94	Third order Recurrence relation form	A
	$c_n a_n + c_{n-1} a_{n-1} + \dots + c_{n-k} a_{n-k} = 0$ for $n \ge k \ge 3$	
	$c_{n-1}a_{n-1} + \dots + c_{n-k}a_{n-k} = 0$ for $n \ge k \ge 0$	
	$c_n a_n + c_{n-1} a_{n-1} + \dots + c_{n-k} a_{n-k} = 0$ for $n \ge k \ge 1$	
	$c_{n-1}a_{n-1} + \dots + c_{n-k}a_{n-k} = 0$ for $n \ge k \ge 2$	
95	Non homogenous Recurrence relations of second and higher orders form	В
	$c_n a_n + c_{n-1} a_{n-1} + \dots + c_{n-k} a_{n-k} = 0 \text{ for } n \ge K \ge 2$	
	$c_n a_n + c_{n-1} a_{n-1} + \dots + c_{n-k} a_{n-k} = f(n) \text{ for } n \ge K \ge 2$	
	$c_{n-1}a_{n-1}+\dots+c_{n-k}a_{n-k}=0 \text{ for } n \ge K \ge 2$	
01	$c_{n-1}a_{n-1}+\dots+c_{n-k}a_{n-k}=0 \text{ for } n\geq K\geq 2$	*
96	General solution for the Non homogenous Recurrence relations of second and higher orders form	А

	$a_n = a_n^h + a_n^p$	
	$a_n = a_n^h - a_n^p$	
	$a_n = a_n^h * a_n^p$	
	$a_n = a_n^h / a_n^p$	
97	$f(x) = (1-x)^{-1}$ is a generating function for the sequence	Δ
- 21	1(x)-(1-x) is a generating function for the sequence	А
	1,-1,1,-1,1,-1,	
	1,2,3,4,	
	None	
98	$2x^{2}(1-x)^{-1}$ sequence generated by the function is	B
	0,0,0,2,2,2,	
	0,0,2,2,2,2,	
	0,2,2,2,2,2,	
	2,2,2,2,2,2,	
99	$2x^{3}+(1-x)^{-1}$ sequence generated by the function is	В
	1,3,1,3,1,3,1,	
	1,1,1,3,1,1,1,	
	1,1,1,3,3,3,3,	
	1,1,1,3,1,1,3,	
100	Generating function for the following sequence $1^2, 2^2, 3^2, \ldots$	А
	x(1+x)	
	$\frac{1}{(1-)^3}$	
	(1-x)	
	x(1+x)	
	$\frac{1}{(1+x)^3}$	
	(1+x)	
	$\frac{1}{\left(1+x\right)^3}$	
	(1-x)	
	$\frac{(1)}{(1-1)^3}$	
	(1-x)	
101	Generating function for the following sequence 0^2 , 1^2 , 2^2 , 3^2 ,	A
	x(1+x)	
	$\frac{1}{(1-x)^3}$	
	r(1+r)	
	$\frac{x(1+x)}{(1+x)^3}$	
	(1+x)	
	$\frac{(1+x)}{(1+x)^2}$	
	$(1+x)^3$	
	(1-x)	
	$(1-x)^3$	
102	Generating function for the following sequence 0^3 , 1^3 , 2^3 , 3^3 ,	А
	$(x^2+4x+1)/(1-x)^4$	
	$(x^2+4x+1)/(1+x)^4$	
	$(x^2-4x-1)/(1-x)^4$	
	None	
103	Generating function for the following sequence 1 ³ ,2 ³ ,3 ³ ,	Α
	$x(x^2+4x+1)/(1-x)^4$	
	$x(x^2+4x+1)/(1+x)^4$	
	$x(x^2-4x-1)/(1-x)^4$	
	None	
104	Generating function for the following sequence 1, 1, 0, 1, 1,	Α
	$(1-x)^{-1} - x^2$	

	$(1-x)^{-2} - x^2$	
	$(1 - x)^{-2} - x$	
	None	
105	$\binom{n}{C}$ –	٨
105	(C_r) –	A
	$\frac{n!}{(n-1)}$	
	r!(n-r)!	
	<i>n</i> !	
	$\overline{r!(n+r)!}$	
	<u>n!</u>	
	$\frac{n!}{n!r!}$	
	None	
106	$(-^{n}C_{r}) =$	В
100	$(1)^{r} (n+r-1)^{r-1} (1)^{r-1} (1$	D
	(1) (Cr)	
	(-1) (-1) (-1) (-1)	
	(-1) (C_{r-1})	
107		٨
107	$(-C_r) =$	A
	$(-1)^{r}$ $\begin{pmatrix} n-1\\ n-1 \end{pmatrix}$	
	$(-1)^{r} \begin{pmatrix} m & r \\ r & -1 \end{pmatrix}$	
	$(1)^{r} (n^{r+1} C_{r})$	
100	$(-1)^{1} (^{n+1-1} C_{n-1})$	
108	Find the coefficient of x^3 in $(1-2x)^{-7}$	A
	$2^5 \times ({}^{11}C 5)$	
	$2^5 \times ({}^{11}C_8)$	
	$2^5 \times ({}^{11}C_7)$	
	$2^5 \times ({}^{11}C_6)$	
109	Find the coefficient of x^{27} in $(x^4+x^5+x^6+)^5$	А
	330	
	320	
	360	
	340	
110	Find the coefficient of x^{27} in $(x^4+2x^5+3x^6+)^5$	А
110	11 440	
	11.420	
	11,460	
	11.480	
111	Solve the recurrence relation $a_{1} - 7a_{1}$ where $n > 0$ $a_{2} - 98$	Δ
	Solve the recurrence relation $a_{\text{fl}} = 7a_{\text{fl}-1}$ where $n \ge 0$ $a_2 = 70$	Π
	$a_n - 2$ 7 $a_n - 8 \times 7^n$	
	$a_n = 0$ 7 $a_n = -A * 7^n$	
	None	
112	Solve the recurrence relation $a_n = na_{n+1}$ for $n \ge 1$ $a_0 = 1$	Δ
112	Solve the recurrence relation $a_{\text{fl}} = ha_{\text{fl}-1}$ for $h \ge 1$ $a_0 = 1$	Π
	$a_{\rm II} - (n_{\rm I}) a_{\rm I}$	
	$a_{\rm fl} - ({\rm n}^{-1}) a_{\rm fl}$ $a_{\rm fl} - ({\rm n}^{-1}) a_{\rm fl}$	
	$a_n - (n+1) a_0$	
113	Note Solve the recurrence relation $a + a + 6a = -0$ n>2 given that $a = 1$ $a = 8$	٨
115	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} - 6n - 2$ given that $a_0 - 1, a_1 - 6$	Λ
	$a_n - 2(-3) + 2$	
	$a_n - 2(-3) - 2$	
	$a_n - \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2}$	
111	Note Solve the requirement relation $a_{-2a} = 2a_{-2a} = 0$ m/2 given that $a_{-5a} = 2a_{-2a}$	D
114	solve the recurrence relation $a_n - 3a_{n-1} - 2a_{n-2} - 0$ field given that $a_1 = 3, a_2 = 3$	D
	$a_n - \frac{-2}{2} + \frac{1}{2}$	
	$\frac{a_n - 2 + 7}{2}$	
1	$a_n = -2 + 7^{-1}$	

	None	
115	Solve the recurrence relation $a_n-6a_{n-1}+9a_{n-2}=0$ n ≥ 2 given that	А
	$a_0=3, a_1=12$	
	$\mathbf{a}_{n} = (5 - n)3^{n}$	
	$a_n = (5-2n)3^n$	
	$a_n = (5+n)3^n$	
	None	
116	A non homogenous recurrence relations of second and higher orders	В
-	general solution is	
	$a_n = a_n^h + a_n^h$	
	$a_n = a_n^{h} + a_n^{p}$	
	$a_n = a_n + a_n^p$	
	None	
117	A non homogenous recurrence relations of second and higher orders	А
	general solution is $a_n = a_n^{h} + a_n^{p}$, a_n^{h} is called as	
	Complementary solution	
	Particular solution	
	Both	
	None	
118	A non homogenous recurrence relations of second and higher orders	B
110	repert a solution is $a_{1} = a_{1}^{h} + a_{2}^{p} a_{3}^{p}$ is called as	D
	General solution	
	Derticular solution	
	Path	
	Doll	
110	None	٨
119	A non nomogenous recurrence relations of second and night orders $f(x)$ is a solution of the property of the	А
	general solution is $a_n = a_n^m + a_n^p$. suppose $f(n)$ is a polynomial of	
	degree q and 1 is not a root. In case of a_n^p is taken part as	
	$A_0+A_1n+A_2n^2+\dots+A_qn^q$	
	n^{m} { $A_0+A_1n+A_2n^2+\dotsA_qn^q$ }	
100	A ₀ n ^m b ⁿ	
120	A non homogenous recurrence relations of second and higher orders	В
	general solution is $a_n = a_n^n + a_n^p$. suppose $f(n)$ is a polynomial of	
	degree q and 1 is a root of multiplicity of m. in case of a_n^p is taken part	
	as	
	$A_0+A_1n+A_2n^2+\dots+A_qn^q$	
	$n^{m} \{ A_0 + A_1 n + A_2 n^2 + \dots + A_q n^q \}$	
	A ₀ b ⁿ	
	A ₀ n ^m b ⁿ	~
121	A non homogenous recurrence relations of second and higher orders	C
	general solution is $a_n = a_n^{n} + a_n^{p}$. suppose $f(n) = \alpha b_n$. α is constant and	
	b is not a root of the characteristics of equation of homogenous part.	
	in case of a_n^p is taken part as	
	$A_0 + A_1 n + A_2 n^2 + \dots + A_q n^q$	
	$n^{m} \{ A_0 + A_1 n + A_2 n^2 + \dots + A_q n^q \}$	
	A ₀ b ⁿ	
	A ₀ n ^m b ⁿ	
122	A non homogenous recurrence relations of second and higher orders	D
	general solution is $a_n = a_n^n + a_n^p$. suppose $f(n) = \alpha b_n$. α is constant and	
	b is a root of multiplicity m of equation of homogenous par. in case of	
	a_n^{ν} is taken part as	
ļ	$A_0 + A_1 n + A_2 n^2 + \dots + A_q n^q$	
	$n^{m} \{ A_{0} + A_{1}n + A_{2}n^{2} + \dots + A_{q}n^{q} \}$	
	$\begin{array}{c} n^{m} \{ A_{0} + A_{1}n + A_{2}n^{2} + \dots + A_{q}n^{q} \} \\ A_{0}b^{n} \end{array}$	

123	$a_n = ca_{n-1} + f(n)$ generating function for the first order recurrence	В
	relation is $f(x)=$	
	$a_0 + xg(x)/1 + c(x)$	
	$a_0 + xg(x)/1 - c(x)$	
	$a_0 - xg(x)/1 - c(x)$	
	None	
124	$a_n + Aa_{n-1} + Ba_{n-2} = f(n)$ generating function for the second order	A
	recurrence relation is $f(x)=$	
	$a_0 + (a_1 + a_0 A)x + x^2 g(x) / 1 + Ax + Bx^2$	
	$a_0 + (a_1 + a_0 A)x - x^2 g(x) / 1 + Ax + Bx^2$	
	$a_0 + (a_1 + a_0 A)x - x^2 g(x) / 1 + Ax + Bx^2$	
	None	
125	$a_{n+2} - 10a_{n+1} + 21a_n = 3n^2 + 2$ find the $a_n^h =$	A
	$A \times 3^n + B \times 7^n$	
	$A \times 3^n - B \times 7^n$	
	$A + 3^n \times B + 7^n$	
	None	